3.352 \(\int \frac {\tan (c+d x) (A+B \tan (c+d x))}{(a+b \tan (c+d x))^{3/2}} \, dx\)

Optimal. Leaf size=141 \[ \frac {2 a (A b-a B)}{b d \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}-\frac {(A-i B) \tanh ^{-1}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a-i b}}\right )}{d (a-i b)^{3/2}}-\frac {(A+i B) \tanh ^{-1}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a+i b}}\right )}{d (a+i b)^{3/2}} \]

[Out]

-(A-I*B)*arctanh((a+b*tan(d*x+c))^(1/2)/(a-I*b)^(1/2))/(a-I*b)^(3/2)/d-(A+I*B)*arctanh((a+b*tan(d*x+c))^(1/2)/
(a+I*b)^(1/2))/(a+I*b)^(3/2)/d+2*a*(A*b-B*a)/b/(a^2+b^2)/d/(a+b*tan(d*x+c))^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.28, antiderivative size = 141, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 5, integrand size = 31, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.161, Rules used = {3591, 3539, 3537, 63, 208} \[ \frac {2 a (A b-a B)}{b d \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}-\frac {(A-i B) \tanh ^{-1}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a-i b}}\right )}{d (a-i b)^{3/2}}-\frac {(A+i B) \tanh ^{-1}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a+i b}}\right )}{d (a+i b)^{3/2}} \]

Antiderivative was successfully verified.

[In]

Int[(Tan[c + d*x]*(A + B*Tan[c + d*x]))/(a + b*Tan[c + d*x])^(3/2),x]

[Out]

-(((A - I*B)*ArcTanh[Sqrt[a + b*Tan[c + d*x]]/Sqrt[a - I*b]])/((a - I*b)^(3/2)*d)) - ((A + I*B)*ArcTanh[Sqrt[a
 + b*Tan[c + d*x]]/Sqrt[a + I*b]])/((a + I*b)^(3/2)*d) + (2*a*(A*b - a*B))/(b*(a^2 + b^2)*d*Sqrt[a + b*Tan[c +
 d*x]])

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rule 3537

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[(c*
d)/f, Subst[Int[(a + (b*x)/d)^m/(d^2 + c*x), x], x, d*Tan[e + f*x]], x] /; FreeQ[{a, b, c, d, e, f, m}, x] &&
NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && EqQ[c^2 + d^2, 0]

Rule 3539

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[(c
 + I*d)/2, Int[(a + b*Tan[e + f*x])^m*(1 - I*Tan[e + f*x]), x], x] + Dist[(c - I*d)/2, Int[(a + b*Tan[e + f*x]
)^m*(1 + I*Tan[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0]
&& NeQ[c^2 + d^2, 0] &&  !IntegerQ[m]

Rule 3591

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e
_.) + (f_.)*(x_)]), x_Symbol] :> Simp[((b*c - a*d)*(A*b - a*B)*(a + b*Tan[e + f*x])^(m + 1))/(b*f*(m + 1)*(a^2
 + b^2)), x] + Dist[1/(a^2 + b^2), Int[(a + b*Tan[e + f*x])^(m + 1)*Simp[a*A*c + b*B*c + A*b*d - a*B*d - (A*b*
c - a*B*c - a*A*d - b*B*d)*Tan[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0]
 && LtQ[m, -1] && NeQ[a^2 + b^2, 0]

Rubi steps

\begin {align*} \int \frac {\tan (c+d x) (A+B \tan (c+d x))}{(a+b \tan (c+d x))^{3/2}} \, dx &=\frac {2 a (A b-a B)}{b \left (a^2+b^2\right ) d \sqrt {a+b \tan (c+d x)}}+\frac {\int \frac {A b-a B+(a A+b B) \tan (c+d x)}{\sqrt {a+b \tan (c+d x)}} \, dx}{a^2+b^2}\\ &=\frac {2 a (A b-a B)}{b \left (a^2+b^2\right ) d \sqrt {a+b \tan (c+d x)}}+\frac {(A-i B) \int \frac {1+i \tan (c+d x)}{\sqrt {a+b \tan (c+d x)}} \, dx}{2 (i a+b)}+\frac {((i a+b) (A+i B)) \int \frac {1-i \tan (c+d x)}{\sqrt {a+b \tan (c+d x)}} \, dx}{2 \left (a^2+b^2\right )}\\ &=\frac {2 a (A b-a B)}{b \left (a^2+b^2\right ) d \sqrt {a+b \tan (c+d x)}}+\frac {(A-i B) \operatorname {Subst}\left (\int \frac {1}{(-1+x) \sqrt {a-i b x}} \, dx,x,i \tan (c+d x)\right )}{2 (a-i b) d}+\frac {(A+i B) \operatorname {Subst}\left (\int \frac {1}{(-1+x) \sqrt {a+i b x}} \, dx,x,-i \tan (c+d x)\right )}{2 (a+i b) d}\\ &=\frac {2 a (A b-a B)}{b \left (a^2+b^2\right ) d \sqrt {a+b \tan (c+d x)}}-\frac {(i (A+i B)) \operatorname {Subst}\left (\int \frac {1}{-1+\frac {i a}{b}-\frac {i x^2}{b}} \, dx,x,\sqrt {a+b \tan (c+d x)}\right )}{(a+i b) b d}+\frac {(i A+B) \operatorname {Subst}\left (\int \frac {1}{-1-\frac {i a}{b}+\frac {i x^2}{b}} \, dx,x,\sqrt {a+b \tan (c+d x)}\right )}{(a-i b) b d}\\ &=-\frac {(A-i B) \tanh ^{-1}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a-i b}}\right )}{(a-i b)^{3/2} d}-\frac {(A+i B) \tanh ^{-1}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a+i b}}\right )}{(a+i b)^{3/2} d}+\frac {2 a (A b-a B)}{b \left (a^2+b^2\right ) d \sqrt {a+b \tan (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 1.43, size = 229, normalized size = 1.62 \[ \frac {\frac {b \left (A \left (b^2-a \sqrt {-b^2}\right )-b B \left (a+\sqrt {-b^2}\right )\right ) \tanh ^{-1}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a-\sqrt {-b^2}}}\right )}{\sqrt {-b^2} \sqrt {a-\sqrt {-b^2}}}-\frac {b \left (A \left (a \sqrt {-b^2}+b^2\right )+b B \left (\sqrt {-b^2}-a\right )\right ) \tanh ^{-1}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a+\sqrt {-b^2}}}\right )}{\sqrt {-b^2} \sqrt {a+\sqrt {-b^2}}}+\frac {2 a (A b-a B)}{\sqrt {a+b \tan (c+d x)}}}{b d \left (a^2+b^2\right )} \]

Antiderivative was successfully verified.

[In]

Integrate[(Tan[c + d*x]*(A + B*Tan[c + d*x]))/(a + b*Tan[c + d*x])^(3/2),x]

[Out]

((b*(A*(b^2 - a*Sqrt[-b^2]) - b*(a + Sqrt[-b^2])*B)*ArcTanh[Sqrt[a + b*Tan[c + d*x]]/Sqrt[a - Sqrt[-b^2]]])/(S
qrt[-b^2]*Sqrt[a - Sqrt[-b^2]]) - (b*(A*(b^2 + a*Sqrt[-b^2]) + b*(-a + Sqrt[-b^2])*B)*ArcTanh[Sqrt[a + b*Tan[c
 + d*x]]/Sqrt[a + Sqrt[-b^2]]])/(Sqrt[-b^2]*Sqrt[a + Sqrt[-b^2]]) + (2*a*(A*b - a*B))/Sqrt[a + b*Tan[c + d*x]]
)/(b*(a^2 + b^2)*d)

________________________________________________________________________________________

fricas [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)*(A+B*tan(d*x+c))/(a+b*tan(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

giac [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: TypeError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)*(A+B*tan(d*x+c))/(a+b*tan(d*x+c))^(3/2),x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,x):;OUTPUT:Unab
le to check sign: (2*pi/x/2)>(-2*pi/x/2)Unable to check sign: (2*pi/x/2)>(-2*pi/x/2)Unable to check sign: (2*p
i/x/2)>(-2*pi/x/2)Unable to check sign: (2*pi/x/2)>(-2*pi/x/2)Unable to check sign: (2*pi/x/2)>(-2*pi/x/2)Unab
le to check sign: (2*pi/x/2)>(-2*pi/x/2)Unable to check sign: (2*pi/x/2)>(-2*pi/x/2)Unable to check sign: (2*p
i/x/2)>(-2*pi/x/2)Unable to check sign: (2*pi/x/2)>(-2*pi/x/2)Unable to check sign: (2*pi/x/2)>(-2*pi/x/2)Unab
le to check sign: (2*pi/x/2)>(-2*pi/x/2)Unable to check sign: (2*pi/x/2)>(-2*pi/x/2)Unable to check sign: (2*p
i/x/2)>(-2*pi/x/2)Unable to check sign: (2*pi/x/2)>(-2*pi/x/2)Unable to check sign: (2*pi/x/2)>(-2*pi/x/2)Unab
le to check sign: (2*pi/x/2)>(-2*pi/x/2)Unable to check sign: (2*pi/x/2)>(-2*pi/x/2)Unable to check sign: (2*p
i/x/2)>(-2*pi/x/2)Unable to check sign: (2*pi/x/2)>(-2*pi/x/2)Unable to check sign: (2*pi/x/2)>(-2*pi/x/2)Unab
le to check sign: (2*pi/x/2)>(-2*pi/x/2)Unable to check sign: (2*pi/x/2)>(-2*pi/x/2)Unable to check sign: (2*p
i/x/2)>(-2*pi/x/2)Unable to check sign: (2*pi/x/2)>(-2*pi/x/2)Unable to check sign: (2*pi/x/2)>(-2*pi/x/2)Unab
le to check sign: (2*pi/x/2)>(-2*pi/x/2)Unable to check sign: (2*pi/x/2)>(-2*pi/x/2)Unable to check sign: (2*p
i/x/2)>(-2*pi/x/2)Unable to check sign: (2*pi/x/2)>(-2*pi/x/2)Unable to check sign: (2*pi/x/2)>(-2*pi/x/2)Unab
le to check sign: (2*pi/x/2)>(-2*pi/x/2)Unable to check sign: (2*pi/x/2)>(-2*pi/x/2)Unable to check sign: (2*p
i/x/2)>(-2*pi/x/2)Unable to check sign: (2*pi/x/2)>(-2*pi/x/2)Unable to check sign: (2*pi/x/2)>(-2*pi/x/2)Unab
le to check sign: (2*pi/x/2)>(-2*pi/x/2)Unable to check sign: (2*pi/x/2)>(-2*pi/x/2)Unable to check sign: (2*p
i/x/2)>(-2*pi/x/2)Warning, need to choose a branch for the root of a polynomial with parameters. This might be
 wrong.The choice was done assuming [d]=[89,-63]sym2poly/r2sym(const gen & e,const index_m & i,const vecteur &
 l) Error: Bad Argument ValueWarning, need to choose a branch for the root of a polynomial with parameters. Th
is might be wrong.The choice was done assuming [d]=[99,23]sym2poly/r2sym(const gen & e,const index_m & i,const
 vecteur & l) Error: Bad Argument Valuesym2poly/r2sym(const gen & e,const index_m & i,const vecteur & l) Error
: Bad Argument Valuesym2poly/r2sym(const gen & e,const index_m & i,const vecteur & l) Error: Bad Argument Valu
esym2poly/r2sym(const gen & e,const index_m & i,const vecteur & l) Error: Bad Argument Valuesym2poly/r2sym(con
st gen & e,const index_m & i,const vecteur & l) Error: Bad Argument Valuesym2poly/r2sym(const gen & e,const in
dex_m & i,const vecteur & l) Error: Bad Argument Valuesym2poly/r2sym(const gen & e,const index_m & i,const vec
teur & l) Error: Bad Argument Valuesym2poly/r2sym(const gen & e,const index_m & i,const vecteur & l) Error: Ba
d Argument Valuesym2poly/r2sym(const gen & e,const index_m & i,const vecteur & l) Error: Bad Argument Valuesym
2poly/r2sym(const gen & e,const index_m & i,const vecteur & l) Error: Bad Argument Valuesym2poly/r2sym(const g
en & e,const index_m & i,const vecteur & l) Error: Bad Argument Valuesym2poly/r2sym(const gen & e,const index_
m & i,const vecteur & l) Error: Bad Argument Valuesym2poly/r2sym(const gen & e,const index_m & i,const vecteur
 & l) Error: Bad Argument ValueWarning, integration of abs or sign assumes constant sign by intervals (correct
 if the argument is real):Check [abs(t_nostep^2-1)]Discontinuities at zeroes of t_nostep^2-1 were not checkedE
valuation time: 82.7Done

________________________________________________________________________________________

maple [B]  time = 0.29, size = 7956, normalized size = 56.43 \[ \text {output too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tan(d*x+c)*(A+B*tan(d*x+c))/(a+b*tan(d*x+c))^(3/2),x)

[Out]

result too large to display

________________________________________________________________________________________

maxima [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)*(A+B*tan(d*x+c))/(a+b*tan(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

Timed out

________________________________________________________________________________________

mupad [B]  time = 12.18, size = 5742, normalized size = 40.72 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((tan(c + d*x)*(A + B*tan(c + d*x)))/(a + b*tan(c + d*x))^(3/2),x)

[Out]

(log(- ((((((96*A^4*a^2*b^4*d^4 - 16*A^4*b^6*d^4 - 144*A^4*a^4*b^2*d^4)^(1/2) + 4*A^2*a^3*d^2 - 12*A^2*a*b^2*d
^2)/(a^6*d^4 + b^6*d^4 + 3*a^2*b^4*d^4 + 3*a^4*b^2*d^4))^(1/2)*(32*A*b^12*d^4 + ((((96*A^4*a^2*b^4*d^4 - 16*A^
4*b^6*d^4 - 144*A^4*a^4*b^2*d^4)^(1/2) + 4*A^2*a^3*d^2 - 12*A^2*a*b^2*d^2)/(a^6*d^4 + b^6*d^4 + 3*a^2*b^4*d^4
+ 3*a^4*b^2*d^4))^(1/2)*(a + b*tan(c + d*x))^(1/2)*(64*a*b^12*d^5 + 320*a^3*b^10*d^5 + 640*a^5*b^8*d^5 + 640*a
^7*b^6*d^5 + 320*a^9*b^4*d^5 + 64*a^11*b^2*d^5))/4 + 96*A*a^2*b^10*d^4 + 64*A*a^4*b^8*d^4 - 64*A*a^6*b^6*d^4 -
 96*A*a^8*b^4*d^4 - 32*A*a^10*b^2*d^4))/4 + (a + b*tan(c + d*x))^(1/2)*(16*A^2*b^10*d^3 + 32*A^2*a^2*b^8*d^3 -
 32*A^2*a^6*b^4*d^3 - 16*A^2*a^8*b^2*d^3))*(((96*A^4*a^2*b^4*d^4 - 16*A^4*b^6*d^4 - 144*A^4*a^4*b^2*d^4)^(1/2)
 + 4*A^2*a^3*d^2 - 12*A^2*a*b^2*d^2)/(a^6*d^4 + b^6*d^4 + 3*a^2*b^4*d^4 + 3*a^4*b^2*d^4))^(1/2))/4 - 24*A^3*a^
3*b^6*d^2 - 24*A^3*a^5*b^4*d^2 - 8*A^3*a^7*b^2*d^2 - 8*A^3*a*b^8*d^2)*(((96*A^4*a^2*b^4*d^4 - 16*A^4*b^6*d^4 -
 144*A^4*a^4*b^2*d^4)^(1/2) + 4*A^2*a^3*d^2 - 12*A^2*a*b^2*d^2)/(a^6*d^4 + b^6*d^4 + 3*a^2*b^4*d^4 + 3*a^4*b^2
*d^4))^(1/2))/4 + (log(- ((((-((96*A^4*a^2*b^4*d^4 - 16*A^4*b^6*d^4 - 144*A^4*a^4*b^2*d^4)^(1/2) - 4*A^2*a^3*d
^2 + 12*A^2*a*b^2*d^2)/(a^6*d^4 + b^6*d^4 + 3*a^2*b^4*d^4 + 3*a^4*b^2*d^4))^(1/2)*(32*A*b^12*d^4 + ((-((96*A^4
*a^2*b^4*d^4 - 16*A^4*b^6*d^4 - 144*A^4*a^4*b^2*d^4)^(1/2) - 4*A^2*a^3*d^2 + 12*A^2*a*b^2*d^2)/(a^6*d^4 + b^6*
d^4 + 3*a^2*b^4*d^4 + 3*a^4*b^2*d^4))^(1/2)*(a + b*tan(c + d*x))^(1/2)*(64*a*b^12*d^5 + 320*a^3*b^10*d^5 + 640
*a^5*b^8*d^5 + 640*a^7*b^6*d^5 + 320*a^9*b^4*d^5 + 64*a^11*b^2*d^5))/4 + 96*A*a^2*b^10*d^4 + 64*A*a^4*b^8*d^4
- 64*A*a^6*b^6*d^4 - 96*A*a^8*b^4*d^4 - 32*A*a^10*b^2*d^4))/4 + (a + b*tan(c + d*x))^(1/2)*(16*A^2*b^10*d^3 +
32*A^2*a^2*b^8*d^3 - 32*A^2*a^6*b^4*d^3 - 16*A^2*a^8*b^2*d^3))*(-((96*A^4*a^2*b^4*d^4 - 16*A^4*b^6*d^4 - 144*A
^4*a^4*b^2*d^4)^(1/2) - 4*A^2*a^3*d^2 + 12*A^2*a*b^2*d^2)/(a^6*d^4 + b^6*d^4 + 3*a^2*b^4*d^4 + 3*a^4*b^2*d^4))
^(1/2))/4 - 24*A^3*a^3*b^6*d^2 - 24*A^3*a^5*b^4*d^2 - 8*A^3*a^7*b^2*d^2 - 8*A^3*a*b^8*d^2)*(-((96*A^4*a^2*b^4*
d^4 - 16*A^4*b^6*d^4 - 144*A^4*a^4*b^2*d^4)^(1/2) - 4*A^2*a^3*d^2 + 12*A^2*a*b^2*d^2)/(a^6*d^4 + b^6*d^4 + 3*a
^2*b^4*d^4 + 3*a^4*b^2*d^4))^(1/2))/4 - log(((((96*A^4*a^2*b^4*d^4 - 16*A^4*b^6*d^4 - 144*A^4*a^4*b^2*d^4)^(1/
2) + 4*A^2*a^3*d^2 - 12*A^2*a*b^2*d^2)/(16*a^6*d^4 + 16*b^6*d^4 + 48*a^2*b^4*d^4 + 48*a^4*b^2*d^4))^(1/2)*((((
96*A^4*a^2*b^4*d^4 - 16*A^4*b^6*d^4 - 144*A^4*a^4*b^2*d^4)^(1/2) + 4*A^2*a^3*d^2 - 12*A^2*a*b^2*d^2)/(16*a^6*d
^4 + 16*b^6*d^4 + 48*a^2*b^4*d^4 + 48*a^4*b^2*d^4))^(1/2)*(a + b*tan(c + d*x))^(1/2)*(64*a*b^12*d^5 + 320*a^3*
b^10*d^5 + 640*a^5*b^8*d^5 + 640*a^7*b^6*d^5 + 320*a^9*b^4*d^5 + 64*a^11*b^2*d^5) - 32*A*b^12*d^4 - 96*A*a^2*b
^10*d^4 - 64*A*a^4*b^8*d^4 + 64*A*a^6*b^6*d^4 + 96*A*a^8*b^4*d^4 + 32*A*a^10*b^2*d^4) + (a + b*tan(c + d*x))^(
1/2)*(16*A^2*b^10*d^3 + 32*A^2*a^2*b^8*d^3 - 32*A^2*a^6*b^4*d^3 - 16*A^2*a^8*b^2*d^3))*(((96*A^4*a^2*b^4*d^4 -
 16*A^4*b^6*d^4 - 144*A^4*a^4*b^2*d^4)^(1/2) + 4*A^2*a^3*d^2 - 12*A^2*a*b^2*d^2)/(16*a^6*d^4 + 16*b^6*d^4 + 48
*a^2*b^4*d^4 + 48*a^4*b^2*d^4))^(1/2) - 24*A^3*a^3*b^6*d^2 - 24*A^3*a^5*b^4*d^2 - 8*A^3*a^7*b^2*d^2 - 8*A^3*a*
b^8*d^2)*(((96*A^4*a^2*b^4*d^4 - 16*A^4*b^6*d^4 - 144*A^4*a^4*b^2*d^4)^(1/2) + 4*A^2*a^3*d^2 - 12*A^2*a*b^2*d^
2)/(16*a^6*d^4 + 16*b^6*d^4 + 48*a^2*b^4*d^4 + 48*a^4*b^2*d^4))^(1/2) - log(((-((96*A^4*a^2*b^4*d^4 - 16*A^4*b
^6*d^4 - 144*A^4*a^4*b^2*d^4)^(1/2) - 4*A^2*a^3*d^2 + 12*A^2*a*b^2*d^2)/(16*a^6*d^4 + 16*b^6*d^4 + 48*a^2*b^4*
d^4 + 48*a^4*b^2*d^4))^(1/2)*((-((96*A^4*a^2*b^4*d^4 - 16*A^4*b^6*d^4 - 144*A^4*a^4*b^2*d^4)^(1/2) - 4*A^2*a^3
*d^2 + 12*A^2*a*b^2*d^2)/(16*a^6*d^4 + 16*b^6*d^4 + 48*a^2*b^4*d^4 + 48*a^4*b^2*d^4))^(1/2)*(a + b*tan(c + d*x
))^(1/2)*(64*a*b^12*d^5 + 320*a^3*b^10*d^5 + 640*a^5*b^8*d^5 + 640*a^7*b^6*d^5 + 320*a^9*b^4*d^5 + 64*a^11*b^2
*d^5) - 32*A*b^12*d^4 - 96*A*a^2*b^10*d^4 - 64*A*a^4*b^8*d^4 + 64*A*a^6*b^6*d^4 + 96*A*a^8*b^4*d^4 + 32*A*a^10
*b^2*d^4) + (a + b*tan(c + d*x))^(1/2)*(16*A^2*b^10*d^3 + 32*A^2*a^2*b^8*d^3 - 32*A^2*a^6*b^4*d^3 - 16*A^2*a^8
*b^2*d^3))*(-((96*A^4*a^2*b^4*d^4 - 16*A^4*b^6*d^4 - 144*A^4*a^4*b^2*d^4)^(1/2) - 4*A^2*a^3*d^2 + 12*A^2*a*b^2
*d^2)/(16*a^6*d^4 + 16*b^6*d^4 + 48*a^2*b^4*d^4 + 48*a^4*b^2*d^4))^(1/2) - 24*A^3*a^3*b^6*d^2 - 24*A^3*a^5*b^4
*d^2 - 8*A^3*a^7*b^2*d^2 - 8*A^3*a*b^8*d^2)*(-((96*A^4*a^2*b^4*d^4 - 16*A^4*b^6*d^4 - 144*A^4*a^4*b^2*d^4)^(1/
2) - 4*A^2*a^3*d^2 + 12*A^2*a*b^2*d^2)/(16*a^6*d^4 + 16*b^6*d^4 + 48*a^2*b^4*d^4 + 48*a^4*b^2*d^4))^(1/2) + (l
og((((a + b*tan(c + d*x))^(1/2)*(16*B^2*b^10*d^3 + 32*B^2*a^2*b^8*d^3 - 32*B^2*a^6*b^4*d^3 - 16*B^2*a^8*b^2*d^
3) + ((((96*B^4*a^2*b^4*d^4 - 16*B^4*b^6*d^4 - 144*B^4*a^4*b^2*d^4)^(1/2) - 4*B^2*a^3*d^2 + 12*B^2*a*b^2*d^2)/
(a^6*d^4 + b^6*d^4 + 3*a^2*b^4*d^4 + 3*a^4*b^2*d^4))^(1/2)*(64*B*a*b^11*d^4 - ((((96*B^4*a^2*b^4*d^4 - 16*B^4*
b^6*d^4 - 144*B^4*a^4*b^2*d^4)^(1/2) - 4*B^2*a^3*d^2 + 12*B^2*a*b^2*d^2)/(a^6*d^4 + b^6*d^4 + 3*a^2*b^4*d^4 +
3*a^4*b^2*d^4))^(1/2)*(a + b*tan(c + d*x))^(1/2)*(64*a*b^12*d^5 + 320*a^3*b^10*d^5 + 640*a^5*b^8*d^5 + 640*a^7
*b^6*d^5 + 320*a^9*b^4*d^5 + 64*a^11*b^2*d^5))/4 + 256*B*a^3*b^9*d^4 + 384*B*a^5*b^7*d^4 + 256*B*a^7*b^5*d^4 +
 64*B*a^9*b^3*d^4))/4)*(((96*B^4*a^2*b^4*d^4 - 16*B^4*b^6*d^4 - 144*B^4*a^4*b^2*d^4)^(1/2) - 4*B^2*a^3*d^2 + 1
2*B^2*a*b^2*d^2)/(a^6*d^4 + b^6*d^4 + 3*a^2*b^4*d^4 + 3*a^4*b^2*d^4))^(1/2))/4 - 8*B^3*b^9*d^2 - 24*B^3*a^2*b^
7*d^2 - 24*B^3*a^4*b^5*d^2 - 8*B^3*a^6*b^3*d^2)*(((96*B^4*a^2*b^4*d^4 - 16*B^4*b^6*d^4 - 144*B^4*a^4*b^2*d^4)^
(1/2) - 4*B^2*a^3*d^2 + 12*B^2*a*b^2*d^2)/(a^6*d^4 + b^6*d^4 + 3*a^2*b^4*d^4 + 3*a^4*b^2*d^4))^(1/2))/4 + (log
((((a + b*tan(c + d*x))^(1/2)*(16*B^2*b^10*d^3 + 32*B^2*a^2*b^8*d^3 - 32*B^2*a^6*b^4*d^3 - 16*B^2*a^8*b^2*d^3)
 + ((-((96*B^4*a^2*b^4*d^4 - 16*B^4*b^6*d^4 - 144*B^4*a^4*b^2*d^4)^(1/2) + 4*B^2*a^3*d^2 - 12*B^2*a*b^2*d^2)/(
a^6*d^4 + b^6*d^4 + 3*a^2*b^4*d^4 + 3*a^4*b^2*d^4))^(1/2)*(64*B*a*b^11*d^4 - ((-((96*B^4*a^2*b^4*d^4 - 16*B^4*
b^6*d^4 - 144*B^4*a^4*b^2*d^4)^(1/2) + 4*B^2*a^3*d^2 - 12*B^2*a*b^2*d^2)/(a^6*d^4 + b^6*d^4 + 3*a^2*b^4*d^4 +
3*a^4*b^2*d^4))^(1/2)*(a + b*tan(c + d*x))^(1/2)*(64*a*b^12*d^5 + 320*a^3*b^10*d^5 + 640*a^5*b^8*d^5 + 640*a^7
*b^6*d^5 + 320*a^9*b^4*d^5 + 64*a^11*b^2*d^5))/4 + 256*B*a^3*b^9*d^4 + 384*B*a^5*b^7*d^4 + 256*B*a^7*b^5*d^4 +
 64*B*a^9*b^3*d^4))/4)*(-((96*B^4*a^2*b^4*d^4 - 16*B^4*b^6*d^4 - 144*B^4*a^4*b^2*d^4)^(1/2) + 4*B^2*a^3*d^2 -
12*B^2*a*b^2*d^2)/(a^6*d^4 + b^6*d^4 + 3*a^2*b^4*d^4 + 3*a^4*b^2*d^4))^(1/2))/4 - 8*B^3*b^9*d^2 - 24*B^3*a^2*b
^7*d^2 - 24*B^3*a^4*b^5*d^2 - 8*B^3*a^6*b^3*d^2)*(-((96*B^4*a^2*b^4*d^4 - 16*B^4*b^6*d^4 - 144*B^4*a^4*b^2*d^4
)^(1/2) + 4*B^2*a^3*d^2 - 12*B^2*a*b^2*d^2)/(a^6*d^4 + b^6*d^4 + 3*a^2*b^4*d^4 + 3*a^4*b^2*d^4))^(1/2))/4 - lo
g(- ((a + b*tan(c + d*x))^(1/2)*(16*B^2*b^10*d^3 + 32*B^2*a^2*b^8*d^3 - 32*B^2*a^6*b^4*d^3 - 16*B^2*a^8*b^2*d^
3) - (((96*B^4*a^2*b^4*d^4 - 16*B^4*b^6*d^4 - 144*B^4*a^4*b^2*d^4)^(1/2) - 4*B^2*a^3*d^2 + 12*B^2*a*b^2*d^2)/(
16*a^6*d^4 + 16*b^6*d^4 + 48*a^2*b^4*d^4 + 48*a^4*b^2*d^4))^(1/2)*((((96*B^4*a^2*b^4*d^4 - 16*B^4*b^6*d^4 - 14
4*B^4*a^4*b^2*d^4)^(1/2) - 4*B^2*a^3*d^2 + 12*B^2*a*b^2*d^2)/(16*a^6*d^4 + 16*b^6*d^4 + 48*a^2*b^4*d^4 + 48*a^
4*b^2*d^4))^(1/2)*(a + b*tan(c + d*x))^(1/2)*(64*a*b^12*d^5 + 320*a^3*b^10*d^5 + 640*a^5*b^8*d^5 + 640*a^7*b^6
*d^5 + 320*a^9*b^4*d^5 + 64*a^11*b^2*d^5) + 64*B*a*b^11*d^4 + 256*B*a^3*b^9*d^4 + 384*B*a^5*b^7*d^4 + 256*B*a^
7*b^5*d^4 + 64*B*a^9*b^3*d^4))*(((96*B^4*a^2*b^4*d^4 - 16*B^4*b^6*d^4 - 144*B^4*a^4*b^2*d^4)^(1/2) - 4*B^2*a^3
*d^2 + 12*B^2*a*b^2*d^2)/(16*a^6*d^4 + 16*b^6*d^4 + 48*a^2*b^4*d^4 + 48*a^4*b^2*d^4))^(1/2) - 8*B^3*b^9*d^2 -
24*B^3*a^2*b^7*d^2 - 24*B^3*a^4*b^5*d^2 - 8*B^3*a^6*b^3*d^2)*(((96*B^4*a^2*b^4*d^4 - 16*B^4*b^6*d^4 - 144*B^4*
a^4*b^2*d^4)^(1/2) - 4*B^2*a^3*d^2 + 12*B^2*a*b^2*d^2)/(16*a^6*d^4 + 16*b^6*d^4 + 48*a^2*b^4*d^4 + 48*a^4*b^2*
d^4))^(1/2) - log(- ((a + b*tan(c + d*x))^(1/2)*(16*B^2*b^10*d^3 + 32*B^2*a^2*b^8*d^3 - 32*B^2*a^6*b^4*d^3 - 1
6*B^2*a^8*b^2*d^3) - (-((96*B^4*a^2*b^4*d^4 - 16*B^4*b^6*d^4 - 144*B^4*a^4*b^2*d^4)^(1/2) + 4*B^2*a^3*d^2 - 12
*B^2*a*b^2*d^2)/(16*a^6*d^4 + 16*b^6*d^4 + 48*a^2*b^4*d^4 + 48*a^4*b^2*d^4))^(1/2)*((-((96*B^4*a^2*b^4*d^4 - 1
6*B^4*b^6*d^4 - 144*B^4*a^4*b^2*d^4)^(1/2) + 4*B^2*a^3*d^2 - 12*B^2*a*b^2*d^2)/(16*a^6*d^4 + 16*b^6*d^4 + 48*a
^2*b^4*d^4 + 48*a^4*b^2*d^4))^(1/2)*(a + b*tan(c + d*x))^(1/2)*(64*a*b^12*d^5 + 320*a^3*b^10*d^5 + 640*a^5*b^8
*d^5 + 640*a^7*b^6*d^5 + 320*a^9*b^4*d^5 + 64*a^11*b^2*d^5) + 64*B*a*b^11*d^4 + 256*B*a^3*b^9*d^4 + 384*B*a^5*
b^7*d^4 + 256*B*a^7*b^5*d^4 + 64*B*a^9*b^3*d^4))*(-((96*B^4*a^2*b^4*d^4 - 16*B^4*b^6*d^4 - 144*B^4*a^4*b^2*d^4
)^(1/2) + 4*B^2*a^3*d^2 - 12*B^2*a*b^2*d^2)/(16*a^6*d^4 + 16*b^6*d^4 + 48*a^2*b^4*d^4 + 48*a^4*b^2*d^4))^(1/2)
 - 8*B^3*b^9*d^2 - 24*B^3*a^2*b^7*d^2 - 24*B^3*a^4*b^5*d^2 - 8*B^3*a^6*b^3*d^2)*(-((96*B^4*a^2*b^4*d^4 - 16*B^
4*b^6*d^4 - 144*B^4*a^4*b^2*d^4)^(1/2) + 4*B^2*a^3*d^2 - 12*B^2*a*b^2*d^2)/(16*a^6*d^4 + 16*b^6*d^4 + 48*a^2*b
^4*d^4 + 48*a^4*b^2*d^4))^(1/2) + (2*A*a)/(d*(a^2 + b^2)*(a + b*tan(c + d*x))^(1/2)) - (2*B*a^2)/(b*d*(a^2 + b
^2)*(a + b*tan(c + d*x))^(1/2))

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\left (A + B \tan {\left (c + d x \right )}\right ) \tan {\left (c + d x \right )}}{\left (a + b \tan {\left (c + d x \right )}\right )^{\frac {3}{2}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)*(A+B*tan(d*x+c))/(a+b*tan(d*x+c))**(3/2),x)

[Out]

Integral((A + B*tan(c + d*x))*tan(c + d*x)/(a + b*tan(c + d*x))**(3/2), x)

________________________________________________________________________________________